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Michael Smith, ROSEN Group, UK, describes the development of an entirely digital
inline inspection method.

dvances in inline inspection (ILI) technology have almost always been driven by improvements to hardware components
such as magnets, transducers, sensors and batteries, or the software that converts sensor data into anomaly
measurements. The next great leap in inspection technology will, however, have very little to do with hardware and
sensor data. In fact, the next generation of inspection ‘tools’ will have none of these things at all.
Virtual ILI offers the promise of establishing a pipeline’s condition without having to think about the constraints of location,
flowrate, tight bends, valves or tees, or any of the other features that traditionally create obstacles for an ILI tool.
Why? Because there is no ILI tool — at least not in the conventional sense. Instead, virtual ILI is an entirely digital inspection
that relies on supervised machine learning in order to generate its ‘measurements’.

Supervised machine learning

A commonality across many industries is the need to quantify relationships between variables and formalise these relationships
within predictive models. We may want to model, for example, how world events affect the stock market, how nutritional choices
influence heart health, or how demographic information influences which TV series or movies a user might enjoy.




In each of these cases, the relationship between the

Supeniiaed predictor variables (e.g. age, gender, native language) and
machine learning . . . . . .
target variable (e.g. favorite sci-fi epic) can be expressed usin
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a function, f. For multiple predictor variables (x, x,..x ), and a
Uninspected pipeline Inspected pipelines single target variable ()/) we can write:
Figure 1. Principle of virtual ILI. y = f(x, x,..x)
P A

With enough historical data (i.e. examples of previous
cases) the function f can be approximated and used to make
<>\Q In-line inspection (ILI) predictions for unseen cases.
N (metal loss, cracks, geometry, mapping) o o . . .
This is the principle of supervised machine learning, and
Design and construction it is exactly how virtual ILI works. With enough examples
/ (construction year, coating type, diameter, grade) y : g p
of inspected pipelines, we can identify trends between
@ Fs?ﬁ'??&?éi?és land use, terrain, climate) pipeline characteristics and pipeline condition, and embed
these trends within predictive models (Figure 1). We can then

g Rt deploy these models as a digital alternative to ILI.
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In order to create meaningful predictive models, we need a
relevant and reliable dataset of examples.

The integrity data warehouse, or IDW, is ROSEN’s
global repository of ILI results and integrity management
information. At the time of this writing, the IDW contains
results from almost 15 000 inspections, in addition to design,

Figure 2. Contents of the integrity data warehouse.

u Corrosion
construction, environmental and operational information for
BESE cracking around 10 000 inspected pipelines (Figure 2).
The IDW is still being developed and is estimated to be
#N Bending Strain less than 50% complete, but with a total inspected length
exceeding 20 times the circumference of the Earth, the data
7" Geometric Defects already offer a rich feedstock for predictive modelling.
! o Models can be created for many different pipeline threats
s Third Party Damage (Figure 3), but ROSEN’s most advanced virtual ILI technologies
— owing to the quantity, availability and accuracy of historical
. o data — are trained for corrosion prediction.
Figure 3. Pipeline threats.
External corrosion prediction
_ ROSEN's virtual ILI service for external corrosion prediction
. g can be used to generate corrosion predictions for full
s pipelines, smaller pipeline segments or even individual pipe
= [y, 2, x) g' 5 joints.
1 - Whereas a real ILI will report a list of anomalies within
Target variable - . o o i a pipeline segment, virtual ILI estimates condition metrics.
Anomaly density (m?) Condition metrics are single-valued, numerical descriptors
representing unique aspects of pipeline condition. Examples
Figure 4. Anomaly density as a target variable for external include anomaly density (the number of anomalies per unit
corrosion prediction. area) and maximum depth (the maximum anomaly depth
within the segment). Each condition metric reflects a slightly
different aspect of corrosion. For example, anomaly density
[ Instaliation year represents the quantity of corrosion within a segment, while
Coating type (pipe body and field joint) maximum depth represents severity.
Z:ZS{::; In the language of supervised machine learning, these
y = [0 %2 %) Annual precipitation (rainfall and snowfall) condition metrics are target variables for the models (Figure
Bradiicior variiias l:ters-ecﬁTns (;oadsl, railways, ptower lines) 4).
SZ:T)‘?O;Z::SI(():;;oz:e:::yc )drainage) On the other side of the equation are the predictor

- variables. These are characteristics of the pipeline segment
that may influence (or at least correlate with) external

Figure 5. Predictor variables for external corrosion prediction. . .
corrosion (Figure 5).
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& inspected pipelines, so that it can learn to identify trends.
Does anomaly density increase as pipelines get older? Does
it decrease for pipelines with more modern coatings? What
happens when rainfall is high? What about the influence
of soil type? In this respect the models make use of a

/.~ wealth of open-source environmental datasets containing
valuable information on soil types and chemistries,
elevation, land use, and precipitation (Figure 6), as well as
the locations of roads, railways, water bodies and power
lines.

Once trained, the virtual ILI model is capable of taking
a list of characteristics and returning an estimate of the
target variable — such as anomaly density (Figure 7). But is
it accurate?

Figure 6. Open-source environmental datasets for the United
Kingdom - from left to right, soil type, elevation, land use and
precipitation.

Clearly, a virtual ILI cannot surpass the accuracy of a
real ILI under optimal conditions, but when we test the
models on an unseen sample of pipelines (i.e. pipelines
that were not used to train the model), the performance
is strong. This is exemplified in Figure 8, which shows
anomaly density predictions for pipe joints within several

Figure 7. Virtual ILI for anomaly density (anomalies m™) prediction at hundred unseen pipelines around the world.
pipe joint resolution.

In Figure 8, more than 99% of anomaly density values
are predicted within #1 order of magnitude of the true
(ILI) value — an enviable performance when compared
to traditional modelling techniques for uninspected

pipelines. Anomaly severity can also be predicted with
a high level of confidence. This shows that the complex
-~ beast of external corrosion prediction can in fact be
£ tamed. The pipe joint level of detail means that useful
5 choices can be made regarding future actions.
g Nevertheless, outliers are an inevitability in early
*E machine learning applications, and virtual ILI is no
g exception. Figure 8 shows some significant under- and
g over-estimates of anomaly density. They are relatively
- rare, but still problematic.

In the case of corrosion prediction, these outliers are
most likely caused by unique corrosion processes that the
model has never seen, or by ‘hidden’ variables that are not
currently captured in the models. This serves to highlight

PHSHSE STOTEAN ATy (") the importance of continuous improvement. Virtual ILI
must continuously improve as new ILI datasets become
Figure 8. Predicted anomaly density (virtual ILI) vs. true anomaly available and new predictor variables are collected.
density (real ILI) per pipe joint. Over time, more and more of these
rogue predictions will be brought into line, and the
already excellent performance will further improve. It also
Predictor variables can be related to design and shows that the role of the subject matter expert remains
construction (such as age, coating type and pipe grade), critical. An expert review of the results can identify
cathodic protection, or even the local environment. cases with unexpectedly low or high anomaly density or
Once the target and predictor variables are defined, severity, reducing the potential for significant errors.
the model can be trained. This means showing the model We already know the power of ILI for integrity
as many examples as possible of historical corrosion, management of pipelines, and virtual ILI may be the next
as detected by real inspections. In the case of external best thing.
corrosion prediction, the models are trained using more than The results from virtual ILI promise to be an excellent
100 million metal loss anomalies detected over the past 20 basis for quantitative risk and integrity assessments,
years. allowing decisions on mitigation, rehabilitation and future
In addition to the condition metrics, the model monitoring to be made with more confidence than ever
must see the characteristics (predictor variables) for the before.
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