
Michael Smith, ROSEN Group, UK, describes the development of an entirely digital 
inline inspection method.

A dvances in inline inspection (ILI) technology have almost always been driven by improvements to hardware components 
such as magnets, transducers, sensors and batteries, or the software that converts sensor data into anomaly 
measurements. The next great leap in inspection technology will, however, have very little to do with hardware and 
sensor data. In fact, the next generation of inspection ‘tools’ will have none of these things at all.

Virtual ILI offers the promise of establishing a pipeline’s condition without having to think about the constraints of location, 
flowrate, tight bends, valves or tees, or any of the other features that traditionally create obstacles for an ILI tool. 

Why? Because there is no ILI tool – at least not in the conventional sense. Instead, virtual ILI is an entirely digital inspection 
that relies on supervised machine learning in order to generate its ‘measurements’.

Supervised machine learning
A commonality across many industries is the need to quantify relationships between variables and formalise these relationships 
within predictive models. We may want to model, for example, how world events affect the stock market, how nutritional choices 
influence heart health, or how demographic information influences which TV series or movies a user might enjoy.



In each of these cases, the relationship between the 
predictor variables (e.g. age, gender, native language) and 
target variable (e.g. favorite sci-fi epic) can be expressed using 
a function, f. For multiple predictor variables (x1, x2…xn), and a 
single target variable (y) we can write:

y = f(x1, x2…xn)

With enough historical data (i.e. examples of previous 
cases) the function f can be approximated and used to make 
predictions for unseen cases. 

This is the principle of supervised machine learning, and 
it is exactly how virtual ILI works. With enough examples 
of inspected pipelines, we can identify trends between 
pipeline characteristics and pipeline condition, and embed 
these trends within predictive models (Figure 1). We can then 
deploy these models as a digital alternative to ILI.

Integrity data warehouse (IDW)
In order to create meaningful predictive models, we need a 
relevant and reliable dataset of examples. 

The integrity data warehouse, or IDW, is ROSEN’s 
global repository of ILI results and integrity management 
information. At the time of this writing, the IDW contains 
results from almost 15 000 inspections, in addition to design, 
construction, environmental and operational information for 
around 10 000 inspected pipelines (Figure 2).

The IDW is still being developed and is estimated to be 
less than 50% complete, but with a total inspected length 
exceeding 20 times the circumference of the Earth, the data 
already offer a rich feedstock for predictive modelling.

Models can be created for many different pipeline threats 
(Figure 3), but ROSEN’s most advanced virtual ILI technologies 
– owing to the quantity, availability and accuracy of historical 
data – are trained for corrosion prediction.

External corrosion prediction
ROSEN’s virtual ILI service for external corrosion prediction 
can be used to generate corrosion predictions for full 
pipelines, smaller pipeline segments or even individual pipe 
joints.

Whereas a real ILI will report a list of anomalies within 
a pipeline segment, virtual ILI estimates condition metrics. 
Condition metrics are single-valued, numerical descriptors 
representing unique aspects of pipeline condition. Examples 
include anomaly density (the number of anomalies per unit 
area) and maximum depth (the maximum anomaly depth 
within the segment). Each condition metric reflects a slightly 
different aspect of corrosion. For example, anomaly density 
represents the quantity of corrosion within a segment, while 
maximum depth represents severity.

In the language of supervised machine learning, these 
condition metrics are target variables for the models (Figure 
4).

On the other side of the equation are the predictor 
variables. These are characteristics of the pipeline segment 
that may influence (or at least correlate with) external 
corrosion (Figure 5).

Figure 2. Contents of the integrity data warehouse.

Figure 1. Principle of virtual ILI.

Figure 5. Predictor variables for external corrosion prediction.

Figure 4. Anomaly density as a target variable for external 
corrosion prediction.

Figure 3. Pipeline threats.
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Predictor variables can be related to design and 
construction (such as age, coating type and pipe grade), 
cathodic protection, or even the local environment.

Once the target and predictor variables are defined, 
the model can be trained. This means showing the model 
as many examples as possible of historical corrosion, 
as detected by real inspections. In the case of external 
corrosion prediction, the models are trained using more than 
100 million metal loss anomalies detected over the past 20 
years.

In addition to the condition metrics, the model 
must see the characteristics (predictor variables) for the 

inspected pipelines, so that it can learn to identify trends. 
Does anomaly density increase as pipelines get older? Does 
it decrease for pipelines with more modern coatings? What 
happens when rainfall is high? What about the influence 
of soil type? In this respect the models make use of a 
wealth of open-source environmental datasets containing 
valuable information on soil types and chemistries, 
elevation, land use, and precipitation (Figure 6), as well as 
the locations of roads, railways, water bodies and power 
lines.

Once trained, the virtual ILI model is capable of taking 
a list of characteristics and returning an estimate of the 
target variable – such as anomaly density (Figure 7). But is 
it accurate?

Clearly, a virtual ILI cannot surpass the accuracy of a 
real ILI under optimal conditions, but when we test the 
models on an unseen sample of pipelines (i.e. pipelines 
that were not used to train the model), the performance 
is strong. This is exemplified in Figure 8, which shows 
anomaly density predictions for pipe joints within several 
hundred unseen pipelines around the world.

In Figure 8, more than 99% of anomaly density values 
are predicted within ±1 order of magnitude of the true 
(ILI) value – an enviable performance when compared 
to traditional modelling techniques for uninspected 
pipelines. Anomaly severity can also be predicted with 
a high level of confidence. This shows that the complex 
beast of external corrosion prediction can in fact be 
tamed. The pipe joint level of detail means that useful 
choices can be made regarding future actions.

Nevertheless, outliers are an inevitability in early 
machine learning applications, and virtual ILI is no 
exception. Figure 8 shows some significant under- and 
over-estimates of anomaly density. They are relatively 
rare, but still problematic.

In the case of corrosion prediction, these outliers are 
most likely caused by unique corrosion processes that the 
model has never seen, or by ‘hidden’ variables that are not 
currently captured in the models. This serves to highlight 
the importance of continuous improvement. Virtual ILI 
must continuously improve as new ILI datasets become 
available and new predictor variables are collected. 

Over time, more and more of these 
rogue predictions will be brought into line, and the 
already excellent performance will further improve. It also 
shows that the role of the subject matter expert remains 
critical. An expert review of the results can identify 
cases with unexpectedly low or high anomaly density or 
severity, reducing the potential for significant errors.

We already know the power of ILI for integrity 
management of pipelines, and virtual ILI may be the next 
best thing. 

The results from virtual ILI promise to be an excellent 
basis for quantitative risk and integrity assessments, 
allowing decisions on mitigation, rehabilitation and future 
monitoring to be made with more confidence than ever 
before. 

Figure 6. Open-source environmental datasets for the United 
Kingdom – from left to right, soil type, elevation, land use and 
precipitation.

Figure 7. Virtual ILI for anomaly density (anomalies m-2) prediction at 
pipe joint resolution.

Figure 8. Predicted anomaly density (virtual ILI) vs. true anomaly 
density (real ILI) per pipe joint.
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